
QuARk: A GUI forQuality-Aware Ranking of Arguments
Markus Nilles

s4manill@uni-trier.de
Trier University
Trier, Germany

Lorik Dumani
dumani@uni-trier.de

Trier University
Trier, Germany

Ralf Schenkel
schenkel@uni-trier.de

Trier University
Trier, Germany

ABSTRACT
With the Web augmenting every day and computers increasingly
getting more powerful, research in the field of computational argu-
mentation becomes more and more important. One of its research
branches is argument retrieval, which aims at finding and present-
ing users the best arguments for their queries. Several systems
already exist for this purpose, all having the same goal but reach-
ing it in different ways. In line with existing work, an argument
consists of a claim supported or attacked by a premise. Now that
argument retrieval has become a separate task in the CLEF lab
Touché, displaying the ranking is becoming increasingly important.

In this paper we presentQuARk, a GUI that allows users to re-
trieve arguments from a focused debate collection for their queries.
Since we strictly distinguished between frontend and backend and
kept the communication between them simple, QuARk can be ex-
tended to integrate various argument retrieval systems, assuming
some modifications are made. In order to demonstrate the GUI, we
show the integration of a complex retrieval algorithm that we also
presented in the CLEF lab Touché. Our retrieval process consists
of two parts. In the first step, it finds the most similar claims to
the query. Therefore, the user can select between different stan-
dard IR similarity methods. The second step ranks the premises
directly related to the claims. Therefore, the user can choose to rank
the arguments either by quantitative, qualitative, or a combined
measure.

CCS CONCEPTS
• Information systems → Document representation; Informa-
tion retrieval query processing; Probabilistic retrieval mod-
els; Similarity measures.

KEYWORDS
GUI, argument retrieval system, argument search, ranking argu-
ments, argument clustering.
ACM Reference Format:
Markus Nilles, Lorik Dumani, and Ralf Schenkel. 2021. QuARk: A GUI for
Quality-Aware Ranking of Arguments. In Proceedings of the 44th Interna-
tional ACM SIGIR Conference on Research and Development in Information
Retrieval (SIGIR ’21), July 11–15, 2021, Virtual Event, Canada. ACM, New
York, NY, USA, 4 pages. https://doi.org/10.1145/3404835.3462795

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGIR ’21, July 11–15, 2021, Virtual Event, Canada
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8037-9/21/07…$15.00
https://doi.org/10.1145/3404835.3462795

1 INTRODUCTION
Argumentation has always been important and exists at least as long
as mankind. We need reasoning to form well-founded opinions for
ourselves, or to convince others to certain standpoints. This applies
to trivial matters such as to decide which smartphone to buy as
well as to important ones, such as in politics. Arguments can even
lead to actions that influence and change complete lifestyles. And
since arguments are crucial in political debates because they are the
major factors for voting parties, we can state that even democracies
base on arguments [14].

In the literature and especially in the field of computational
argumentation an argument is defined to be a claim supported by
or opposed to a premise [9]. Normally, the claim is a controversial
point of view, which is supposed to be made either more plausible or
illogical by means of evidence in form of premises [1]. An example
for a claim is “nuclear energy is dangerous”. A supporting premise to
this claim is “radiation is harmful to health”. An opposing premise
to this claim is “experts know the risks of nuclear energy and reduced
them to a minimum”.

Due to the information age and the associated growing Web, as
well as the computing power of modern computers, the research
branch of computational argumentation emerged. A subfield of this
is argument retrieval, which involves listing the best arguments
for user queries so that the user can form an opinion. In order
to accomplish this, it is necessary to have argument retrieval sys-
tems. The idea of an argument search engine for end users is not
new. Wachsmuth et al. [15] and Stab et al. [13] have already intro-
duced such search engines (more to argument retrieval engines in
Section 2).

At least through the CLEF lab Touché, argument retrieval in-
creased enormously in importance but one shortcoming of these
GUIs is that they can only use their own argument retrieval systems.
Therefore, the community needs a system that is able to integrate
and display rankings of arguments of a system. In this paper we
present QuARk, a GUI that users can apply for their own systems.
During implementation, we paid particular attention to keeping
the frontend and backend as strictly separate as possible to simplify
the integration of other frameworks. Still, it naturally needs some
modifications to integrate other systems there. We demonstrate
the functionality and visualization of the tool by incorporating a
system [6, 7] we presented in the CLEF lab Touché [3–5].1 2

This demo addresses people interested in argument retrieval and
argument search. After forming a query, the user can choose be-
tween different similarity and configuration methods. The program
will then display the clusters of arguments for the corresponding
query.These clustered arguments originate from debate portals.The
1The GUI is available at the URL http://argumentsearcher.uni-trier.de:8080/.
2The source code as well as short video of the usage of the GUI is available at the URL
https://basilika.uni-trier.de/nextcloud/s/XpQ8RGi3Ry1YREQ.

https://doi.org/10.1145/3404835.3462795
https://doi.org/10.1145/3404835.3462795
http://argumentsearcher.uni-trier.de:8080/
https://basilika.uni-trier.de/nextcloud/s/XpQ8RGi3Ry1YREQ

user can examine all semantically equal arguments in the clusters
as well as variables that help to understand the ranking.

Next, Section 2 introduces to related work. Then, Section 3 ex-
plains the backend and the retrieval process that works in the
background of our system [6, 7]. After that, we describe the fron-
tend and the default user interactivity in Section 4. Finally, Section 5
concludes the paper.

Figure 1: Visualization of the GUI showing the start page
containing the elements query, ranking options and re-
sults. The similarity methods are for claim retrieval. The op-
tion for premise retrieval accomplish a re-ranking of the
premises. Below is an example for a cluster result showing
a representative.

2 RELATEDWORK
In this section, we briefly review the most popular argument search
engines and explain both similarities as well as differences to our
GUI. For work in the area of argument retrieval, we refer to the
CLEF lab Touché [3–5].

Wachsmuth et al. [15] present Args, one of the first argument
search engine prototypes.3 Args runs on the dataset from Ajjour
et al. [2] which is now also the official dataset of the CLEF lab
3www.args.me

Touché [3–5]. The dataset draws its arguments from five debate
portals indexed by the Java framework Apache Lucene. 45For the
ranking they use the scoring model BM25F [12]. More precisely,
they index the premises together with their associated claims, in
order to give the claims more importance. Given a user’s keyword
query, the system retrieves, ranks, and presents premises support-
ing and attacking the query by taking similarity of the query to
the premises, their corresponding claim, as well as the context
information from the whole discussion into account.

Stab et al. [13] present ArgumenText, an argument search en-
gine for topic-relevant argument search in heterogeneous texts.6
The arguments origin from mining large amounts of Web-scraped
texts. The system outputs a ranked list of with supporting and at-
tacking arguments for a user-given query. This system first finds
relevant documents before it identifies relevant premises on the sen-
tence level there. For ranking, they utilize ElasticSearch together
with the scoring model Okapi BM25 [11].7

In our work, we also use the corpus from Ajjour et al. [2] as it is
the official dataset of Touché. In contrast to the previous mentioned
models, ours works more strictly with a two-step retrieval and does
not take into account textual similarity between query and premise
because convincing premises do not need to have much textual
overlap to the query. For example, the premise “radiation is harmful
to health” might be more convincing to the claim “nuclear energy is
dangerous” than the premise “nuclear energy sounds dangerous” al-
though the textual overlap is higher with the latter premise. Among
others, our system allows more user interaction, i.e., the user can
choose between several methods for claim retrieval and different
ranking options for premises. Since the CLEF lab Touché does not
require the distinction between pro and con in its argument re-
trieval task and this was consequently not taken into account in the
underlying backend, it was also neglected in the frontend. However,
since we make the complete GUI publicly available and the frontend
can be modified with little effort, it is left to future work to include
stances there.

3 BACKEND
In this section, we examine the process of finding arguments that
runs in the background when a query comes in. For this GUI we
implemented the probabilistic framework described in detail in our
groundworks [6, 7] and presented in the CLEF lab Touché. Below,
we revise, due to space limitations, only the most important points.

3.1 Preprocessing Steps
To process queries, the system first needs a collection of arguments.
The underlying dataset is that of Ajjour et al. [2], which is the
official dataset for the CLEF lab Touché and consists of about 391k
arguments in form of (claim, premise) pairs. We initially processed
this dataset by producing (claim, premise lists) pairs. This involved
merging multiple premises into the same list if their corresponding
claim is textually exactly the same.

4The scraped debate portals are debate.org, debatepedia.org, debatewise.org,
forandagainst.com, and idebate.org.
5https://lucene.apache.org/
6www.argumentsearch.de
7https://www.elastic.co/

www.args.me
debate.org
debatepedia.org
debatewise.org
forandagainst.com
idebate.org
https://lucene.apache.org/
www.argumentsearch.de
https://www.elastic.co/

Figure 2: Visualization of the GUI showing the content of a
cluster after clicking the button “Showmore” in Figure 1.The
hover effect additionally shows the components that pro-
duce the final score. The premise ID is the same as for Args.

Since several premises can be assigned to a claim, we can now
form also pairs of premises for a claim. For these we can then train
classifiers, which decide for each pair, which of the two is more
convincing with respect to the claim for a certain argument quality
dimension, e.g., whether the argument is logically conclusive or just
provokes emotions. To train these classifiers, we used the dataset
of Wachsmuth et al. [16], which consists of 320 arguments, for
which three experts assessed a total of 15 different argument quality
dimensions. We concentrated on the three main dimensions (1)
logical quality in terms of the cogency or strength of an argument,
(2) rhetorical quality in terms of the persuasive effect of an argument
or argumentation (called effectiveness), and (3) dialectical quality in
terms of the reasonableness of argumentation for resolving issues.
By observing their mean values per dimension we derived which
argument is more convincing. Then, for the dataset we work with,

we counted for each premise of a claim how often it was more
convincing for the particular dimensions compared to the other
premises of the same claim. We refer to this as dimension convincing
frequency (DCF).

Then, both claims and premises were clustered by their mean-
ing. For this purpose, we transformed claims and premises into
embeddings by applying Sentence BERT [10]. Then, both the sets
of claims and premises were clustered agglomeratively using the
average linkage method and the Euclidean distance. A dynamic
tree-cut [8] served to determine the final clusters and thus the clus-
ter ids. We constructed inverted indexes for claims and premises
using Apache Lucene, where both cluster information and DCFs
were included.

3.2 Query Processing
For a given query, our system works with a two-step retrieval. In
the first step, it determines the most similar claims using a textual
similarity method. In the framework this is expressed as probability
% (2 |@), i.e., the probability that the user would pick claim 2 for
query @. Now, it locates all claims that have the same claim cluster
id as one of the returned claims. Then the premises directly tied to
these claims are identified, as well as the premises with the same
premise cluster ids. Whether a user would pick a premise ? for 2
taking into account his preferred quality dimensions Δ is noted as
% (? |2,Δ) in the framework. The probability that a user would select
? for @ is denoted by % (? |@,Δ) = % (2 |@) · % (? |2,Δ). However, we
are interested in clusters of premises rather than individual ones.
Therefore, we work with the probability % (c 9 |@,Δ) by aggregating
the individual probabilities % (? |@,Δ) of all premises per cluster,
i.e., % (c 9 |@,Δ) =

∑
?∈c 9

% (? |@,Δ). As it is sufficient to show only
one representative from a list of semantically similar premises, we
select the longest one here, as it is intuitively the most precise.

In order to estimate % (? |2,Δ) to obtain a ranking we applied (1)
quantitative and (2) qualitative goodness features. The quantitative
goodness is noted with pf-icf and can be determined exclusively
by frequencies. It is based on tf-idf and consists of the product
of two components: the premise frequency pf(?, 2) and the inverse
claim frequency icf(?). The first component describes the number
of similar premises to ? that are used to support (or refute) similar
claims to 2 . Here, similarity refers to the meaning and hence to the
clusters. The second component describes the inverse number of
claim clusters for which ? serves as support. For the qualitative
goodness we make use of DCFs. Here we simply aggregate the three
dimensions with Laplace-Smoothing.

4 FRONTEND
The frontend of QuARk is implemented by means of an Angular
Web application.8 Thus, it can be used from any browser.

Figure 1 visualizes the user interface. As we can see, it is simple
to use and consists of a text field for the search query with a search
button “Search” as well as an area for claim retrieval (step 1, see
Section 3) (“Similarity Method to find similar Claims”) and an area
to choose between estimators for premise retrieval and ranking.

8https://angular.io/

https://angular.io/

After entering a query, it sends an HTTP-GET request to the
backend and redirects the user to a result page. For the communica-
tion between backend and frontend, we committed ourselves to use
JSON files as it allows researchers in future work to easily integrate
their own systems. Encoding the query entered by the user into the
URL with the options set makes it possible to bookmark the query
and reopen it later without having to re-enter the search text and
reset the options. The clusters are listed at the bottom in descending
order of % (c |@,Δ), i.e. the probability that a user chooses the cluster
c for the query @. In this ranking framework, this probability also
reports the overall performance. Figure 2 shows the contents of a
cluster when clicking on “Show more”. More precisely, it shows all
premises, of which only the representative was shown before in
Figure 1. For each premise, besides the associated result claim and
the premise id associated with args, there are also the individual
factors introduced in the backend calculation in Section 3. To avoid
overwhelming users with all the factors, we just let most of them
display with a hover effect.

For claim retrieval, there are different standard IR methods pro-
vided by Apache Lucene together with their individual options
that can be configured via drop-down menus. The GUI allows the
user to choose between nine main similarity methods for finding
similar claims to the query, which are shown in Figure 3. Addi-
tionally, the user can modify the parameters of the methods. The
system presents the user only the options that are appropriate for
the currently selected option. Some options require numbers as
parameters. There, the user can adjust them in a text field. How-
ever, all parameters are always prefilled with default values. When
the user changes a parameter, the frontend checks whether the
entered value is valid. If not, it informs the user what she has to
enter instead.

For estimating the premise quality, we utilized the methods de-
scribed in Section 3. The user can choose between three ranking
options: (1) PF-ICF (Default), (2) the aggregated DCFs values, and
the average of the two.

(1) Divergence from Randomness (2) Divergence from Inde-
pendence (3) Language model with Dirichlet-Smoothing (4)
Language model with Jelinek-Mercer smoothing (5) Boolean
Similarity (6) TF-IDF (7) Okapi BM25 (8) Axiomatic ap-
proaches (9) Information based approaches

Figure 3: Standard IR similarity methods for step 1, i.e.,
claim retrieval.

5 CONCLUSION AND FUTUREWORK
In this paper we have presented QuARk, an interactive GUI for
argument retrieval, to meet the growing need in this community,
as argument retrieval is becoming more and more important, not
least because of the CLEF lab Touché. The GUI allows the user to
influence the retrieval of arguments in several ways. Moreover, it is
possible to evolve the backend as well as the frontend, to introduce
new methods, or even to replace them with another backend.

In future work, we will include multiple systems and try to
visualize the differences between them.

ACKNOWLEDGMENTS
We would like to thank Tobias Zeimetz for his invaluable help in
setting up the server.

This work has been funded by the Deutsche Forschungsgemein-
schaft (DFG) within the project ReCAP, Grant Number 375342983 -
2018-2024, as part of the Priority Program ”Robust Argumentation
Machines (RATIO)” (SPP-1999).

REFERENCES
[1] 2014. Handbook of Argumentation Theory. Springer. https://doi.org/10.1007/

978-90-481-9473-5
[2] Yamen Ajjour, Henning Wachsmuth, Johannes Kiesel, Martin Potthast, Matthias

Hagen, and Benno Stein. 2019. Data Acquisition for Argument Search: The
args.me Corpus. In KI (Lecture Notes in Computer Science, Vol. 11793). Springer.
https://doi.org/10.1007/978-3-030-30179-8_4

[3] Alexander Bondarenko, Maik Fröbe, Meriem Beloucif, Lukas Gienapp, Yamen
Ajjour, Alexander Panchenko, Chris Biemann, Benno Stein, HenningWachsmuth,
Martin Potthast, and Matthias Hagen. 2020. Overview of Touché 2020: Argument
Retrieval. In CLEF (CEUR Workshop Proceedings, Vol. 2696). CEUR-WS.org.

[4] Alexander Bondarenko, Maik Fröbe, Meriem Beloucif, Lukas Gienapp, Yamen
Ajjour, Alexander Panchenko, Chris Biemann, Benno Stein, HenningWachsmuth,
Martin Potthast, and Matthias Hagen. 2020. Overview of Touché 2020: Argument
Retrieval - Extended Abstract. In CLEF (Lecture Notes in Computer Science,
Vol. 12260). Springer. https://doi.org/10.1007/978-3-030-58219-7_26

[5] Alexander Bondarenko, Matthias Hagen, Martin Potthast, Henning Wachsmuth,
Meriem Beloucif, Chris Biemann, Alexander Panchenko, and Benno Stein.
2020. Touché: First Shared Task on Argument Retrieval. In ECIR
(Lecture Notes in Computer Science, Vol. 12036). Springer. https://doi.org/10.
1007/978-3-030-45442-5_67

[6] Lorik Dumani, Patrick J. Neumann, and Ralf Schenkel. 2020. A Framework for
Argument Retrieval - Ranking Argument Clusters by Frequency and Specificity.
In ECIR (Lecture Notes in Computer Science, Vol. 12035). Springer. https://doi.
org/10.1007/978-3-030-45439-5_29

[7] Lorik Dumani and Ralf Schenkel. 2020. Quality-Aware Ranking of Arguments.
In CIKM. ACM. https://doi.org/10.1145/3340531.3411960

[8] Peter Langfelder, Bin Zhang, and Steve Horvath. 2009. Dynamic Tree Cut: In-
depth description, tests and applications.

[9] Andreas Peldszus and Manfred Stede. 2013. From Argument Diagrams to Ar-
gumentation Mining in Texts: A Survey. International Journal of Cognitive
Informatics and Natural Intelligence 7, 1 (2013).

[10] Nils Reimers and Iryna Gurevych. 2019. Sentence-BERT: Sentence Embeddings
using Siamese BERT-Networks. In EMNLP-IJCNLP. Association for Computa-
tional Linguistics. https://doi.org/10.18653/v1/D19-1410

[11] Stephen E. Robertson, Steve Walker, Susan Jones, Micheline Hancock-Beaulieu,
and Mike Gatford. 1994. Okapi at TREC-3. In TREC, Vol. Special Publication
500-225. National Institute of Standards and Technology (NIST).

[12] Stephen E. Robertson and Hugo Zaragoza. 2009. The Probabilistic Relevance
Framework: BM25 and Beyond. Foundations and Trends in Information Retrieval
3, 4 (2009).

[13] Christian Stab, Johannes Daxenberger, Chris Stahlhut, Tristan Miller, Benjamin
Schiller, Christopher Tauchmann, Steffen Eger, and Iryna Gurevych. 2018. Argu-
menText: Searching for Arguments in Heterogeneous Sources. In NAACL-HLT.

[14] Dietrich Trautmann, Johannes Daxenberger, Christian Stab, Hinrich Schütze, and
Iryna Gurevych. 2020. Fine-Grained Argument Unit Recognition and Classifica-
tion. In AAAI. AAAI Press.

[15] Henning Wachsmuth, Martin Potthast, Khalid Al Khatib, Yamen Ajjour, Jana
Puschmann, Jiani Qu, Jonas Dorsch, Viorel Morari, Janek Bevendorff, and
Benno Stein. 2017. Building an Argument Search Engine for the Web. In
ArgMining@EMNLP. https://doi.org/10.18653/v1/W17-5106

[16] Henning Wachsmuth, Benno Stein, Graeme Hirst, Vinodkumar Prabhakaran,
Yonatan Bilu, Yufang Hou, Nona Naderi, and Tim Alberdingk Thijm. 2017. Com-
putational ArgumentationQuality Assessment in Natural Language. In EACL.

https://doi.org/10.1007/978-90-481-9473-5
https://doi.org/10.1007/978-90-481-9473-5
https://doi.org/10.1007/978-3-030-30179-8_4
https://doi.org/10.1007/978-3-030-58219-7_26
https://doi.org/10.1007/978-3-030-45442-5_67
https://doi.org/10.1007/978-3-030-45442-5_67
https://doi.org/10.1007/978-3-030-45439-5_29
https://doi.org/10.1007/978-3-030-45439-5_29
https://doi.org/10.1145/3340531.3411960
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/W17-5106

	Abstract
	1 Introduction
	2 Related Work
	3 Backend
	3.1 Preprocessing Steps
	3.2 Query Processing

	4 Frontend
	5 Conclusion and Future Work
	Acknowledgments
	References

