AQUAPLANE: The Argument Quality Explainer App

Sebastian Britner Lorik Dumani Ralf Schenkel
sebastianbritner@gmail.com dumani@uni-trier.de schenkel@uni-trier.de
Trier University Trier University Trier University
Trier, Germany Trier, Germany Trier, Germany

ABSTRACT
In computational argumentation, so-called quality dimensions such as coherence or rhetoric are often used for ranking arguments. However, the literature often only predicts which argument is more persuasive, but not why this is the case. In this paper, we introduce AQUAPLANE, a transparent and easy-to-extend application that not only decides for a pair of arguments which one is more convincing with respect to a statement, but also provides an explanation.

CCS CONCEPTS
• Information systems ➔ Information systems applications; Web applications; Information retrieval query processing; Retrieval models and ranking.

KEYWORDS
argumentation, argument quality, explanations

ACM Reference Format:

1 INTRODUCTION
Argumentation is an essential part of human communication when there are divergent opinions or conflicts of interest [9]. People argue, among others, in social media, newspaper articles, and political speeches. The goal of argumentation is to persuade an audience, reach agreements, resolve disputes, portray justifications, and find decisions [36]. In the field of computational argumentation (CA), an argument is defined as a claim that is supported or opposed by at least one premise [45]. While the claim portrays a controversial standpoint for which the speaker wants an audience to either increase or decrease its acceptance, a premise serves as evidence or clue to do so. The polarity from a premise to the claim, i.e., whether it is supporting or rejecting, is defined as stance. An example for a (controversial) claim is "tv is better than books", a supporting premise to this claim is "Books and newspapers can’t give you emergency warnings", an opposing premise is "watching tv has a negative effect on mental health".

The research area of CA includes tasks such as extracting arguments from natural language texts (argument mining) [22], classifying arguments into their viewpoints (stance prediction) [34], retrieving and ranking arguments to a query (argument retrieval) [42], or generating new arguments (argument generation) [1]. In this paper, we address a subtask of argument retrieval by considering the quality of arguments for ranking [6], as it has a significant impact on whether an argument can achieve its goals [41]. However, the literature often only predicts which argument is more persuasive or of higher quality, but not why this is the case. Explaining such choices is essential because the effect of an argument on a person may differ due to distinct values and their weighting [2]. For instance, a person might regard an argument as good if convinced by the truth of its premise, while another person might be convinced by a persuasive language. These different qualities are called argument quality dimensions [41]. This subjectivity in perceiving the effect of arguments implies the necessity to additionally show explanations for assigning a higher quality to an argument. A positive side effect is that it establishes more trust to decisions made by an automated system.

In this paper we address explainable argument quality. More precisely, given a pair of arguments with the same stance regarding a controversial claim, our goal is not only to decide which argument is more convincing overall and in several argument quality dimensions, but also to automatically explain and justify this decision. We present AQUAPLANE, the Argument Quality Explainer, a transparent, modular, extensible, and interactive system. Given a claim and two premises with the same stance, it compares them in 15 quality dimensions and explains its decisions. Users can interactively explore the customized explanations to understand the decisions for each dimension.

2 RELATED WORK
Habernal and Gurevych [15] present the dataset UKPConvArg1 which consists of 16k pairs of arguments each with the same stance on the same topic collected from debate portals. They introduce a relative approach to evaluate their persuasiveness by picking the more convincing argument. The methods are promising but it turns out to be complex to derive the reasons for the decision from these models. Gleize et al. [10] take evidence from Wikipedia into account when assessing persuasiveness. They propose a Siamese neural network to solve the task which outperforms the aforementioned approach [15]. Potash et al. [31] and Gleize et al. [10], among others, find a length bias in the UKP datasets, causing methods that use text length to determine persuasiveness to produce results similar to deep learning models. Toledo et al. [37] provide the state-of-the-art approach to determine the more persuasive

1 Code and demo video: https://github.com/recap-utr/Aquaplane.
argument through binary text classification with BERT [4]. For this purpose, they conduct an annotation study on 6.3k arguments collected by using Speech by Crowd, a service developed by IBM to support the collection of arguments. Among others, they prevent length bias by lower differences in text lengths and by limiting text length. However, this does not capture deeper reasoning and more complex argumentation. Further, it is also not robust for use in the real world, where texts are not curated but noisy.

Habernal and Gurevych [14] use the natural language justifications for the decisions which are captured next to the labels in the dataset UKPConvArg1 to evaluate the qualitative properties in each argument pair. Their corpus UKPConvArg2 consists of 9,111 argument pairs annotated with 17 categories targeting different aspects such as information content, subjectivity or comprehensibility. The evaluation showed that a fine-grained analysis of the persuasiveness of arguments requires further investigation. Wachsmuth et al. [41] analyzed various argument quality dimensions from the literature and divide the overall quality into logical, rhetorical, and dialectical quality, which in turn can be divided into sub-dimensions. They provide a taxonomy comprising 15 argument quality dimensions and Dagstuhl-15512 ArgQuality Corpus, a dataset of arguments annotated with respect to the different quality dimensions. Their work was a cornerstone for a lot of further works [5, 12, 32, 48]. Based on this corpus, Wachsmuth and Werner [43] examine which linguistic features of a text can be used to evaluate the different dimensions of argument quality. They establish eight features quantified using various aspects such as spelling errors, use of personal pronouns, length of sentences and words, and types of argument units. They achieved moderate, yet significant, success for scoring arguments. Among others, they prevent length bias by lower differences in text lengths and by limiting text length. However, due to the small size of the dataset, it was not possible to identify additional and more complex features. El Baff et al. [8] investigate how the style of a news article influences persuasiveness, showing that stylistic features have a greater influence on predicting persuasiveness among certain readers than content features. Persing and Ng [30] measure how unconvincing an argument is while also examining why an argument is unconvincing. They define five types of errors and annotate a corpus of arguments from debates with their persuasiveness and thus which errors the author committed. It remains an open question whether the error types are specific enough to help authors identify errors concretely and thus make arguments more persuasive.

3 ARGUMENT QUALITY DIMENSIONS

We now review the 15 logical, rhetorical, and dialectical quality dimensions for arguments from Wachsmuth et al. [41] for which we implemented methods for measurement. The logical quality considers if the reasons given for an argument are reasonable and comprehensible. The rhetorical perspective evaluates how effectively an argument is presented, and the dialectical perspective whether objections are adequately refuted by the argument. They distinguish between higher-level dimensions and sub-dimensions and provide definitions for them:

Cogency (Co) (refers to the _logical_ quality): The premises of an argument are acceptable, relevant to the conclusion, and sufficient to draw it. • _Local Acceptability (LA)_: The premise of an argument is rationally worth believing to be true. • _Local Relevance (LR)_: The premise of an argument contributes to the acceptance or rejection of the conclusion of the argument. • _Local Sufficiency (LS)_: The premises of an argument are sufficient to draw the conclusion.

Effectiveness (Ef) (refers to the _rhetorical_ quality): The argument convinces the target audience of the author’s stance on a particular issue. • _Credibility (Cr)_: The argument is conveyed in a way that makes the author seem credible. • _Emotional Appeal (Em)_: The emotions generated by the argument make the target audience more open to the author’s arguments. • _Clarity (Cl)_: The argument uses correct and clear language, avoids unnecessary complexity, and does not stray from the topic. • _ Appropriateness (Ap)_: The language used in the argument supports the emergence of credibility and emotion and is appropriate to the topic. • _Arrangement (Ar)_: The topic, arguments, and conclusion are placed in the argument in a proper order.

Rationalness (Re) (refers to the _dialectical_ quality): The argument makes a sufficient contribution to the solution of the problem and is accepted by the target audience. • _Global Acceptability (GA)_: The target audience accepts both the consideration of the arguments given and the way they are portrayed. • _Global Relevance (GR)_: The argument cites information and arguments that lead to a final conclusion and thereby contribute to problem solving. • _Global Sufficiency (GS)_: The argument adequately refutes expected counterarguments.

The _Overall Quality_ is the general assessment of quality. In this paper, it is considered as a function of the other dimensions.

4 MAPPING METHODS TO QUALITIES

We now present the methods we use to (i) measure and determine the argument quality dimensions from Section 3 and (ii) explain the decision which argument is better. Note that our mapping is based on theoretical assumptions which we justify below. Note that we kept the mapping of the methods as well as adding or removing them to the dimensions flexible in the code.

**Implemented Methods. ** _Profanity:_ Profanity refers to the use of unacceptable, insulting, or offensive language in the form of cursing [24]. We employ the blacklist by Parker [26] to detect it, setting the profanity of an argument _arg_ as _\frac{\text{number of profane words in arg}}{\text{number of words in arg}}_. It has a negative impact on _Cl_ and _Ap_, since this inappropriate language makes the author look unprofessional, immature, and thus untrustworthy.

Fact-Checking: To prevent negative effects of misinformation it is necessary to check the correctness and reliability of information with fact-checking. Automated fact-checking systems [17] often divide the task into three stages [13]: identifying claims to be verified (check-worthiness), collecting relevant information, and assigning truthfulness. We use the ClaimBuster API [19] to determine check-worthiness and check the truthfulness through the Google FactCheck Claim Search API [11]. We then determine the similarity of the yielded claims using _SBERT_ and cosine similarity to the clause part, and only proceed with the most similar one. We trained a RoBERTa model [23] on the MNLI [47] dataset to detect the stance and invert the ratings if necessary. We map these cosine values to _LA_ and _GA_ because false claims in an argument lead to less acceptance.
Spell Check: Spell checking is necessary to guarantee correct language usage. We follow a rule-based approach [25] to detect spelling errors. For an argument, the number of misspelled and unknown words is related to the argument length in words. Spelling errors have an indirect influence on Cr as many spelling errors can make an author look unprofessional, and on Cl as arguments with fewer spelling errors are more readable and lead to fewer comprehension problems.

Stylometry: Stylometry refers to the analysis of linguistic features of a natural language text to capture and characterize an author’s writing style [20]. We use a subset of the stylometric features implemented in StyleExplorer [38] and map these to the Cl because a complex sentence structure and vocabulary can lead to an argument not being understood or even misunderstood.

Search Engine for SimpleWiki: Wikipedia serves as a modern online lexicon for general knowledge. We indexed the simpleWiki [46] dump (417,965 entries) with Apache Lucene [35] (version 9.4.1), applying BM25F [28]. We use this to get the most relevant SimpleWiki article to an argument and claim with its BM25F score. Since simpleWiki [46] provides general knowledge and the query uses claim and argument, we assume that a higher BM25F score means that the argument contains information that is more generally relevant. Thus, the method influences LR and GR.

Search Engine for debate-org: In debate forums, people argue on controversial topics in order to convince opponents to a particular standpoint. We use the DDO dataset by Durmus and Cardie [7] consisting of 51,594 debates to estimate the relevance of arguments, creating a search engine similar to the one for SimpleWiki. Each entry in DDO includes the claim, as well as pro and con arguments. We infer the relevance of an argument which we use as query on the basis of the highest BM25F score. Since a search query consists of an claim and an argument, we conclude from a high BM25F score that an argument is generally more relevant to solve problems. Therefore, this method is used to determine GR.

URL Sources: Arguments may include sources placed to support claims, often providing sources in the form of URLs. To detect URLs within arguments, we use a regular expression of Perini [29]. By adding sources, both argument and author may appear more credible. Thus, the number of sources employed serves gauging Cr.

Excessive Punctuation: We define excessive punctuation to be a sequence of three or more punctuation marks. We assume that it has a negative impact on argument quality: an author repeatedly using exclamation points or question marks may appear angrier or guided by emotion. Thus, anger makes a person appear inexpertly and is judged less appropriate [39]. Therefore, we assume that excessive punctuation has a negative influence on Cr, Em, and Ap.

All-Caps-Words: All-Caps-Words are words composed of capital letters only, mostly used for emphasizing, or to express emotions. The use of all-caps words could be construed as shouting in the context of social media [18], but also indicate emotional states such as anger, excitement, or joy. We hypothesize that all-caps words have a negative impact on the dimension of Em and that shouting has a negative influence on Cr and Ap.

Dramatic Language: We define dramatic language as descriptive and figurative with metaphors, exaggerations, and other rhetorical stylistic devices. We adopt a simple list-based approach to recognize it, using the adverb lists provided by Rashkin et al. [33]. We determine the dramatic nature of the language as the fraction of these adverbs among all words of an argument. We suppose that dramatic language has a positive influence on the dimension Em.

Ad-hominem-arguments: Ad-hominem-arguments attack individuals based on their characteristics or circumstances, rather than making reference to a counterargument [44]. They represent a fallacy within an argument. Based on the strong results obtained by Patel et al. [27], we fine-tune ALBERT [21] on the dataset of Habernal et al. [16] for the binary detection of ad hominem arguments. We assign this method to the dimension GA since Wachsmuth et al. [40] show that the justification that an argument is attacking or offensive correlates strongly with GA. This goes along with the view that personal attacks are generally unacceptable.

Determining the more convincing argument. Given a pair of arguments, we apply all methods to obtain scores for both. We declare the argument with a higher score for a method to be the comparatively better one for it. There are three outcomes for each dimension and pair: 0: no decision possible, 1: decision for argument 1, and 2: decision for argument 2. While some methods return binary scores (e.g. ad-hominem), some even return multiple scores (e.g. stylometry). The final decision then results from the Boyer-Moore Majority Vote algorithm [3]. To obtain the scores for subdimensions and dimensions, the mapped methods and the hierarchical structure are applied by majority decision. For example, the decision for the subdimension Em results from the decisions of excessive punctuation and dramatic language. This makes the decision-making process transparent. Since there are fewer methods for mapping so far and no methods could be assigned to the LS, Ar, and GS, ambiguous decisions (0) occur frequently. To prevent a strong impact, these were removed from majority decisions. In future work, we expect AQUAPLANE to be augmented by more methods.

Generation of explanations. We generate static explanations corresponding to predefined templates for all decisions for all 15 dimensions. While the decision making process is bottom-up, i.e. from the decisions of the methods to the overall decision, the explanations are presented top-down. The explanations are presented in stages, intended to achieve the interactive aspect of explanations. The overall decision on Overall Quality is summarized in a short statement, e.g. “Argument 1 is more convincing than argument 2”. This overall decision can be explained by the decisions on the next lower dimensions, e.g. “Argument 1 is more (cogent or effective or reasonable) than argument 2, because of its [dimension]”. Likewise, their subdimensions are explained by “Argument 1 has a higher [subdimension] than argument 2”. Lastly, for each method, the values computed and the information returned are presented by applying customized explanations (as they include pieces of arguments inserted in the tool) to provide more understanding. For example for the dimension Cr and the method URL sources an explanation could be “Argument 1 generally gives more sources. The following sources were provided: http://example.org, http://anotherexample.org”.

5 EVALUATION

We now examine how well the qualities presented in Section 3 can be determined by the methods detailed in Section 4.
Table 1: Results for the evaluation dataset

<table>
<thead>
<tr>
<th>Quality dimension</th>
<th>Acc. BL</th>
<th>Macro-F1 BL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Co Cogency</td>
<td>.37</td>
<td>.45</td>
</tr>
<tr>
<td>LA Local Acceptability</td>
<td>.42</td>
<td>.42</td>
</tr>
<tr>
<td>LR Local Relevance</td>
<td>.42</td>
<td>.42</td>
</tr>
<tr>
<td>LS Local Sufficiency</td>
<td>.53</td>
<td>.29</td>
</tr>
<tr>
<td>Ef Effectiveness</td>
<td>.25</td>
<td>.35</td>
</tr>
<tr>
<td>Cr Credibility</td>
<td>.36</td>
<td>.36</td>
</tr>
<tr>
<td>Em Emotional Appeal</td>
<td>.33</td>
<td>.65</td>
</tr>
<tr>
<td>Cl Clarity</td>
<td>.33</td>
<td>.45</td>
</tr>
<tr>
<td>Ap Appropriateness</td>
<td>.38</td>
<td>.43</td>
</tr>
<tr>
<td>Ar Arrangement</td>
<td>.44</td>
<td>.44</td>
</tr>
<tr>
<td>Re Reasonableness</td>
<td>.42</td>
<td>.42</td>
</tr>
<tr>
<td>GA Global Acceptability</td>
<td>.42</td>
<td>.38</td>
</tr>
<tr>
<td>GR Global Relevance</td>
<td>.46</td>
<td>.36</td>
</tr>
<tr>
<td>GS Global Sufficiency</td>
<td>.68</td>
<td>.68</td>
</tr>
<tr>
<td>Ov Overall Quality</td>
<td>.40</td>
<td>.44</td>
</tr>
<tr>
<td>Mc More Convincing</td>
<td>.44</td>
<td>.45</td>
</tr>
</tbody>
</table>

Dataset. We derive an evaluation dataset from the datasets UKPConvArg1 [15] and Dagstuhl-15512-ArgQuality [41]. UKPConvArg1 contains argument pairs from debate portals with the same viewpoint on 16 topics. We use the version UKPConvArg1Strict where argument pairs with equal persuasiveness were removed. The Dagstuhl-15512-ArgQuality corpus contains assessments of 320 arguments from the UKPConvArg1 corpus on the 15 argument quality dimensions. For the assessments, three experts assigned a value to each argument regarding the different dimensions on the scale from 1 (Low) to 3 (High). We take the median of these three ratings for each argument for each dimension. Further, we only use argument pairs from UKPConvArg1Strict if both arguments are in the corpus Dagstuhl-15512-ArgQuality which holds for 985 pairs. For these, we compare the scores on each dimension and derive a decision value that numerically identifies the argument with the higher score. For all 985 instances, we now determine the more convincing argument with Aqaplane and compare them with the labels of the evaluation dataset. We create a baseline for each dimension, where we always take the decision that occurs most frequently in a dimension.

Results. Table 1 shows the calculated accuracies and macro F1-scores to the decisions of each dimension together with the baselines (BL). Only for a few dimensions are the accuracy values above the baselines. Even though the accuracy values and F1-scores are quite low, a good tendency can be seen for some dimensions like GR, which indicates that the assigned methods have a positive influence. In general, however, the accuracy values and F1 scores are not satisfactory. In a manual investigation, we found that some of the methods are not mature and can generate errors.

Determination of the Overall Quality. We evaluated the extent to which the more convincing argument can be determined by a majority decision from the dimensions. Specifically, for each of the dimensions Co, Ef, and Re, we tested whether their decision value follows from the majority decision of the respective subdimensions. Further, we tested whether the decision on the Overall Quality or the More-Convincing label taken from the UKPConvArg1 dataset follows from the majority decision of the Co, Ef, and Re dimensions.

The dimensions Co and Re in many cases infer their decision by a majority vote from their assigned subdimensions. Thus, these dimensions are shown to be well, but not fully, represented by their subdimensions. In contrast, Ef seems to be much more difficult to determine by a majority decision of its subdimensions. This could indicate that the subdimensions encompass more than is captured by the Ef dimension. This could also account for another reason for the very low accuracy and F1 score for Ef in the Table 1. The Overall Quality can often be derived from the Co, Ef, and Re dimensions by majority vote at 0.7827. This is also consistent with the correlation that Wachsmuth et al. [41] measured. When all dimensions are added to the decision of Overall Quality as a test, the frequency reduces to 0.603, which shows that deriving Overall Quality from the three previously mentioned dimensions is a good choice. Figure 1 illustrates this.

6 APPLICATION

The application provides transparency to the decisions as it presents its explanations. In addition, researchers as well as interested users can interactively navigate through the generated explanations to gain understanding of the decision.

A user can enter two arguments together with the claim they refer to. Alternatively it would also be possible to upload a CSV file to enable calculations for multiple inputs. By clicking a button, for both arguments each method to compute the argument quality will be processed, then the qualities will be compared, and explanations of the decisions presented. Users can then interactively navigate through the explanations to gain a deeper understanding of the decision if needed. Interaction happens by clicking on specific terms (highlighted in color) within the explanation text, e.g. clicking on the term “clarity” in the text “Argument 1 has a higher CI than argument 2”, which explains in a detailed view why the argument has a higher CI. The results can be downloaded in a JSON file along with all the information used in the argument quality comparison.

Figure 2 shows the application.
the 4th Workshop on Argument Mining. Association for Computational Linguistics, Copenhagen, Denmark, 49–59. https://doi.org/10.18653/v1/W17-5106

