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ABSTRACT
Computational argumentation and especially argument mining
together with retrieval enjoys increasing popularity. In contrast to
standard search engines that focus on finding documents relevant
to a query, argument retrieval aims at finding the best supporting
and attacking premises given a query claim, e.g., from a predefined
collection of arguments. Here, a claim is the central part of an
argument representing the standpoint of a speaker with the goal
to persuade the audience, and a premise serves as evidence to the
claim. In addition to the actual retrieval process, existing work has
focused on (1) classifying polarities of arguments into supporting
or opposing, (2) classifying arguments by their frames (such as
economic or environmental), and (3) clustering similar arguments by
their meaning to avoid repetitions in the result list. For experiments,
either hand-made argument collections or arguments extracted
from debate portals were used. In this paper, we extend existing
work on argument clustering, making the following contributions:
First, we introduce a novel pipeline for clustering arguments. While
previous work classified arguments either by polarity, frame, or
meaning, our pipeline incorporates these three, allowing a more
systematic presentation of arguments. Second, we introduce a new
dataset consisting of 365 argument graphs accompanyingmore than
11,000 high-quality arguments that, contrary to previous datasets,
have been generated, displayed, and verified by journalists and
were published in newspapers. A thorough evaluation with this
dataset provides a first baseline for future work.

CCS CONCEPTS
• Information systems → Information extraction; Clustering
and classification; Summarization; Test collections.
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argumentation, argument classification, argument framing, argu-
ment clustering, argument retrieval dataset
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1 INTRODUCTION
Argumentation exists as long as humans and in all possible verbal
and non-verbal forms. People use arguments, in order to be able to
form opinions to themselves to particular topics, e.g., which mobile
phone to buy, or to persuade others of own, for instance, political
points of view and to possibly even induce to certain actions. Often
the literature defines an argument as a claim that is supported
or attacked by a premise [34]. The claim describes a controversial
point of view that can be accepted (or refuted) only if it is supported
(or attacked) by premises [33]. In the literature, the terms premise
and argument are often used synonymously. An example for a
claim could be “vaccinations should be mandatory”, an example for
a supporting premise (pro) could be “vaccinations protect us from
deadly diseases”, and an example for a refuting premise (con) could
be “poor people cannot finance vaccinations”. So far researchers often
used sentence-level arguments for convenience. This comes with
the crucial disadvantage that both supporting and attacking parts
may appear in the same premise, which is often used for rhetorical
reasons. For example, it might be very difficult to classify the (main)
stance of the sentence “Vaccinations protect us from deadly diseases
but poor people cannot finance them” not only for systems, but
also for humans. We therefore advocate to work with argument
units [37]. These are usually small spans of text in sentences that
clearly position themselves for or against a topic. Using these, we
avoid the problem of some sentences being both for and against
a topic. Since argument units are typically determined by mining,
this works on both well-formed and user-generated texts. Note
that it is not the intention of the paper to divide sentences into
argument units, but merely to work with them. For the remainder
of this paper, we sometimes use the terms argument and argument
unit synonymously.

Modern argument search engines support users in finding ar-
guments for their queries in form of questions, claims, or key-
words [32, 39]. Such systems usually obtain their arguments by
extracting them from various heterogeneous Web documents and
store them in a preceding step for the sake of efficiency. Given a
user query, the systems compute similarities to the precomputed
arguments ad-hoc and display a ranked list of premises to the user.
Very frequently, the engines divide the resulting arguments into
different stances, i.e., pro or con, so that a user can weigh up before
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Table 1: Example showing premises related to the claim
“vaccinations should be mandatory” in different clusters with
different frames. Positive argument units towards the claim
are highlighted in blue, negative argument units towards the
claim are highlighted in orange.

premise cluster frame
vaccinations protect us from deadly diseases 21 health

producing vaccinations can be very expensive 22 economy

poor people cannot finance vaccinations 23 economy

the lower class may not be able to afford vaccinations 23 economy

deciding on a particular opinion. Considering the fact that most ex-
isting argument search engines derive their arguments from various
debate portals [10, 39] (such as debate.org or idebate.org), where
the premises are actually answers in form of posts on questions
(though they can also stem from other Web documents [32]), it is
obvious that there can be many semantically similar premises for
a query in the result set. Consequently, it makes sense to remove
near duplicates or to cluster them by their meaning.

Although argument clustering is relatively under-researched,
there has been some work on it [2, 10, 27]. In particular, the main
approach here is to first generate (contextualized) embeddings (e.g.
using BERT [9]) of the arguments, and then to perform an agglom-
erative clustering. In order to visualize this procedure, but also its
limitations, let us examine the example in Table 1. Assuming that
the table represents an argument base, current argument search
engines would classify the last two premises as having the same
meaning and show only one of them as a representative of this
cluster. However, they fail in handling the parent theme in column
“frame”. More precisely, for a given particular stance, when an argu-
ment emphasizes a particular aspect of a topic while omitting other
aspects, it is referred to as framing in the social sciences [1, 11].
These systems only return a set of final clusters (here 21, 22, and 23),
but miss an additional grouping of results by frame, which would
make it easier for the user to understand the result list. For example,
the first premise deals with the higher-level frame “health”, while
the last three may be assigned to the frame “economy”. This is es-
pecially important because having (even a few) arguments of the
“right” frame(s) might convince the audience better of a speaker’s
position than having a large number of arguments that the listener
cannot relate to, even if they are scientifically proven [1]. Note that
there is already work on frame classification (see Section 2), but
not integrated into a pipeline for clustering arguments. Another
limitation of current systems is the fact that they do not utilize ar-
gument units but longer texts as they often occur in debate portals.
Table 2 shows the main drawback of not clustering argument units
but whole sentences and emphasizes its importance. The example
shows two premises addressing the topic “vaccinations” where it is
impossible to cluster all relevant text spans and a representative is
shown only once.

In this paper, we tackle these previously mentioned limitations
and make the following contributions: (1) We define an argument
clustering pipeline in which we first classify frames and stances of
all arguments before we cluster these subsets. We will show that
this outperforms state-of-the-art baselines which solely rely on

Table 2: Example showing a case where it is impossible to
cluster all relevant arguments (each a sentence) for the claim
“vaccinations should be mandatory” in different clusters with
clear distinguished stances and showing all argument units
with the same meaning without repetition. Positive argument
units towards the claim are highlighted in blue, negative
argument units towards the claim are highlighted in orange.

frames premise
finance , health vaccinations can be expensive but reduce death rates

health , health vaccinations reduce death rates but can have adverse reactions

hierarchical clustering. (2) We present a new dataset consisting
of 11,266 high-quality argument units on a total of 365 queries,
based on De Argumentenfabriek, which was originally produced
by journalists over a longer period of time in Dutch language. We
translated this into English, validated it, and made it freely available
in two languages to interested researchers.1 Moreover, we present
a focused dataset for evaluation with unified stances and frames.

Next, Section 2 introduces related work and elaborates the dif-
ferences of prior works to ours. Then we present our pipeline in
Section 3. In Section 4 we describe our dataset in more detail. Then,
Section 5 outlines the implemented methods and presents the evalu-
ation of our approach. Finally, we conclude the paper with Section 6
and provide an outlook to future work.

2 RELATEDWORK
The information age and the associated increase in the amount
of data flowing through the Internet, as well as the power of to-
day’s computers, have made the research field of computational
argumentation highly important. Today, research focuses on sev-
eral sub-areas, with argument mining [4, 17] and argument re-
trieval [10, 32, 39] still being the two largest research branches
in this community. While the former deals with the extraction
of arguments from natural language texts, the latter deals with
information-seeking aspects which are typical in the IR area, such
as finding arguments for user-specified query claims, as well as
ranking or clustering them. Two more recently emerged branches
of research deal with the quality of arguments [38, 40], i.e., the per-
suasiveness of arguments, on the one hand, and with the validation
of arguments [35] on the other hand.

Since this paper addresses both a clustering technique for argu-
ments based on existing work as well as a new dataset, we discuss
related work on them and highlight the differences to our work.

Detecting Frames in Arguments. While the identification of frames
in arguments has been considered before, the research towards
aggregating arguments into frames is largely unstudied [1]. Be-
sides the differently applied names for frames (e.g. aspects [27, 36],
facets [19], or frames [1, 21]), there are also conceptually differ-
ent approaches [1]. For example, one fundamental difference in
existing works is the question whether to conduct this task with
topic-specific [6, 11], generic (i.e., a fixed set that is not related to
the topic) [5, 14], or combined frames [7, 21]. Closely related to this

1The dataset is available at the following Website: https://zenodo.org/
record/4813727.
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question is whether to use a supervised [21] or an unsupervised [1]
approach to predict frames.

Misra et al. [19] introduce a pipeline by first extracting the most
essential arguments for a given conversation and then putting their
frames in relation. Their underlying dataset is the Internet Argu-
ment Corpus (IAC) [41]. Naderi and Hirst [21] work with generic
frame classification not at the document level, but at the sentence
level. They propose a supervised approach based on deep neural
networks and distributional representations for classifying frames
in news articles. They represent the meaning of the frames using
Bi-LSTMs and gated recurrent networks. They reach an accuracy
of 0.537 for 16 frames. Ajjour et al. [1] define the task of frame
identification as splitting a set of arguments into a set of exclusive
and non-overlapping frames. Their method first removes topical
features from the arguments and then clusters the arguments into
frames. Since we will use their method as one of two baselines, we
will discuss it later in more detail (see Section 5).

Clustering of Arguments. Clustering arguments becomes cru-
cial mainly for finding premises for a user query in a search sce-
nario, since the arguments in current argument retrieval systems
typically origin from heterogeneous sources such as debate por-
tals [10, 32, 39] and the goal should be to present semantically
similar arguments to a user exactly once. While there is already a
large body of work on argument retrieval [10, 32, 39], argument
clustering remains a rather poorly explored field [27].

To the best of our knowledge, Boltužić and Šnajder [2] conducted
the first work on clustering arguments. They took arguments from
debate portals, computed their word2vec embeddings as features,
and formed an agglomerative clustering to find similar arguments.
Reimers et al. [27] built on this approach and extended it with con-
textualized embeddings, i.e., BERT [9] and ELMo [24], which in
contrast to word2vec [18] or GloVe [23], take the context of a
word into account, wherefore a homonym can be mapped to differ-
ent vectors depending on its meaning. They show how to obtain
a better (hierarchical) frame-based clustering for topic-dependent
arguments using these. They also demonstrated how to use these
embeddings to improve the classification of arguments. However,
contrary to our work, they used two different datasets for classi-
fication and clustering. Moreover, they classify arguments on the
one hand on sentence level and not in argument units, and on the
other hand not in stance or frame as we do, but only in terms of
relevance to a given topic. They also evaluate the dataset of Shnarch
et al. [31], which divides arguments into evidence or no evidence. In
our work, we rather refer to classifying frames within an argument,
e.g. “financial” or “environmental”. In general, the focus of their
work is rather to get the maximum out of the contextualized em-
beddings. Moreover, since they outperform the approach of Misra
et al. [19] with their supervised methods, we include a variant of
their method as one of two baselines for both clustering arguments
by frames and meanings. More precisely, we use the variant of our
prior work [10] where we also studied the clustering of arguments
from debate portals. Unlike Reimers et al. [27], we did not use a
constant tree cut for the final cluster determination, but a dynamic
one [16]. Apart from that, we used Sentence-BERT [26] to deter-
mine embeddings which uses a siamese and triple network and
produces better embeddings than BERT when used out-of-the-box.

Datasets. As previously pointed out, argument mining and argu-
ment retrieval are the two largest research blocks in computational
argumentation. Consequently, the available datasets are also tar-
geted at these two directions. For argument mining, researchers
tend to use structured texts, thus they often extract arguments
from student essays. However, for argument clustering, student
essays can only cover a small part of the task. The scientific focus
on argument retrieval came closer at a later stage. Since argument
mining methods were not yet mature at that time, researchers re-
sorted - initially as an interim solution - to debate portals and used
them as an underlying argument base. However, they have now
become well established among researchers working on argument
retrieval [20, 31, 39].

A significant drawback of the current use of debate portals is
that researchers here often use entire posts as arguments, which
are not always arguments in the sense of argumentation theory as
they are noisy and sometimes very long, making it impossible to
unambiguously cluster arguments by semantics.2 While there is
the option of assigning an argument to multiple clusters [13], we
advocate clustering short argument units, such as the one presented
by Trautmann et al. [37] who identified and divided argumentative
text spans into pro and con text spans.

The second main imperfection of these datasets is the proce-
dure of the similarity judgment of these arguments. Existing works
mostly first form pairs of arguments forwhich either crowd-workers
from Amazon Mechanical Turk are hired to assess similarity [27],
or researchers do this themselves [10]. Both approaches are rea-
sonable, especially because they involve several annotators and
they average the scores at the end. Also, the robustness is usually
measured with an inter-annotator agreement method such as Krip-
pendorff’s U [15]. However, since these are only robust but not
perfect similarities, there is still some room for improvement (even
if a perfect similarity can probably never be reached due to subjec-
tivity), e.g. having a dataset where the similarity of the arguments
was determined by journalists over a longer period of time.

In contrast to previous work dealing with argument clustering,
we do not use a dataset that uses entire posts from debate portals
as arguments, but a corpus consisting of high quality argument
units, which was created by Dutch journalists in a visual fashion
and translated by us into English and converted into a machine-
readable format. Another dataset of interest is Kialo, which is of
high quality but does not come with frame labels.3

3 ARGUMENT CLUSTERING PIPELINE
In this section, we define our two-stage pipeline for clustering
arguments. The key idea, which is grounded in heuristics, is to split
the set of arguments into disjoint subsets based on their stances
and frames using two classifiers, and then cluster these subsets.
The arguments in such disjoint subsets will therefore never be
assigned to the same final cluster. This avoids a key problem of
state-of-the-art methods for argument clustering by hierarchical
clustering, which may assign dissimilar arguments in terms of
stances or frames the same cluster. Figure 1 shows an overview of

2An example for a very long post on a debate portal can be seen at
the following link: https://www.debate.org/debates/abortion-debate/2/.
3https://www.kialo.com/
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classify stance label 

classify frame label ,
where  is a term or a

sequence of terms.

by meaning, for

Figure 1: Pipeline for argument classification and clustering.

our pipeline. The input is a query @ and a set of relevant argument
units ' = {argument1, argument2, . . ., argument=} retrieved by
an argument search engine. The first step consists of the two sub-
steps stance classification and frame classification, which can be
executed in parallel as they are independent from each other. For
the stance classification, we determine the stance B8 in {?A>, 2>=}
of argument8 to @. Note that we abstain from a neutral stance here
because such statements are not argumentative by nature. The idea
here is that if two arguments already have different stances, they
ought never be in the same final cluster. For the frame classification,
we determine the frame 58 from argument8 , which consists of a
term or a sequence of terms. Although this would theoretically
allow all possible sequences of words of any length for a frame, we
do not impose a mandatory restriction here, but we do advocate
that it should simply state the frame of an argument in one word if
possible such as “finance” or “health”, but also multiple terms such
as “job satisfaction”. Now we can form the tuple (argument8 , B8 , 58 )
for argument8 and pass it into the set of argument units� to cluster
for the query. We define a clustering of arguments by meaning as a
set of similar premises that all have the same stance and frame. In
this context, “similar” means that each of the premises mean the
same. As an example, consider Figure 2 with the cluster label “Social
innovation keep care affordable” and its associated specifications.
Given all disjoint subsets �B,5 ⊆ �, where �B,5 = { argument8 :
(argument8 , B , 5 ) } is the set of arguments with the stance B and the
frame 5 as determined by the first step, we then cluster each subset
�B,5 independently to get our final clustering. For this purpose, we
will incorporate agglomerative clustering (see Section 5).

4 DATASET
In this section, we present acquisition and processing of our novel
dataset.

Drawbacks of Existing Datasets. Although argument clustering
has been considered before, most researchers in argumentation,
however, have been working with impure, hand-made, or incom-
plete datasets for a while. Frequently, such datasets include user-
generated posts extracted from debate portals [27]. While they not
only occasionally contain nonsense and insults, they also comewith
the disadvantage that very often they are not real arguments at all,
i.e., do not correspond to arguments as defined in argumentation
theory [10]. As it is undeniable that these posts contain valuable
arguments, but are not in their pure form, we also advocate in-
stead working with their argumentative units, which undoubtedly

exist there. Otherwise, it can have a negative impact on the devel-
opment of computational procedures, considering that machine
learning methods, for example, may be sensitive to errors and non-
argumentative statements. We argue that entire posts are rather
suitable for pioneering work when one is still in the early stages
and applying methods for the first time in order to see where the
journey is going. However, such datasets might not be considered
as the one absolute truth for learning methods.

Dataset of De Argumentenfabriek. This paper presents a dataset
that meets the most stringent requirements. Instead of crowd-
workers [27] or researchers in computer science [10], experts work-
ing in the field of journalism, spent weeks in constructing these
argument graphs. The journalists’ goal in creating the maps was
to keep readers informed on the issues without requiring them to
spend a lot of time re-reading past articles. Therefore, new argu-
ments were transparently added to a map from time to time.

Our dataset consists of 365 unique argument graphs contain-
ing 11,266 arguments in English (and in Dutch), all of which were
originally downloaded as PDFs from the Dutch website De Argu-
mentenfabriek and manually converted to CSV files.4 The graphs
address various regional and national issues such as the “environ-
ment”, “old-age poverty”, or “Brexit”. Figure 2 visualizes an except of
such a graph. As we can infer from the figure, each map contains a
query.5 The left and the right side of the argument map visualize the
stances. In this case, the left side contains the pro arguments while
the right side contains the con arguments. Furthermore, each frame
has its own branch, which originates from a stance. Additionally,
the frames have branches to the individual final clusterings with
their corresponding arguments. Often, the final clusterings have
labels summarizing its arguments.

Processing of the Dataset. We initially downloaded 165 PDFs,
from which we extracted 369 argument graphs. As mentioned be-
fore, the original text of these graphs was mainly written in Dutch.
Consequently, after all graphs were extracted and saved to one large
CSV file, we automatically translated all columns of the CSV into
English using DeepL.6 7 We manually validated and, if necessary,

4The argument graphs were downloaded from the following website:
https://www.argumentenfabriek.nl/nl/producten-kopen-of-gratis-downloaden/.
5This differs to the definition in Section 1 as an argument consists of
a claim and a premise but is deployed in many works [10, 39].
6https://www.deepl.com/.
7We also found an argument map written in Portuguese and some
maps in English language.
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Finance

What are
arguments for and

against social
innovation?

Pro

Social innovation prevents use of more expensive forms of
care through better coordination between supply and demand.

Social innovation reduces care demands and costs by better
matching supply and demand.

Social innovation leads to fewer layers of management
enabling organizations to become cheaper.

Social innovation leads to lower absenteeism costs because
satisfied employees are less sick.

Social innovation keep care affordable

Social innovation gives employees responsibility and they
want to wear.

...

Social innovation provides more fun at work

Job satisfaction

Con

Figure 2: Visualization of an excerpt of an argument map.

corrected the translated texts with respect to their sense in the con-
text of the query. In the process, we removed four (near-)duplicates
to have unique graphs. We left out 77 maps because (1) they con-
tained only graphs or tables as arguments, (2) they were by far too
small, (3) they serve solely as overview maps, (4) the argument texts
consisted only of bullet points, (5) there were several queries in one
map, or (6) they were much too poorly structured. Note that not
all graphs followed the stance-frame-cluster structure presented
in Section 3. For example, in some graphs the stance was missing,
in others there was no frame label or there were several of them.
In the case of multiple frame labels, we clustered them in the form
(frame1; frame2; …; frame=) to avoid omitting crucial information
(e.g., for follow-up works).

Thus, our dataset consists of a total of 11,266 arguments spread
over 365 queries. In total, we found 63 graphs that are divided into
stances and 346 graphs that are divided into frames; 49 graphs come
with both stances and frames. On average, there were 9.926 final
clusters per graph, with a median of 27.

5 METHODS AND EVALUATION
In this section we present the methods used in the implementation
of our pipeline as well as their evaluation. We first describe the clas-
sification of the argument units into their respective stances, and
the determination of their frames. Then, we evaluate the isolated
performance of these methods. After that, we show how these meth-
ods can be combined for clustering arguments. We then evaluate
the end-to-end performance of the whole clustering pipeline.

5.1 Preprocessing of the Dataset
Since in this section we focus on frame detection in argumentative
graphs, we only work with those 49 graphs with argument units
divided into frames on the one hand and stances on the other hand.

We determined the contextualized embeddings of the argument
units, using the framework SBERT from Reimers and Gurevych [26].
For the concrete computation, we used the model stsb-roberta-
large since it achieved the highest performance for the Semantic
Textual Similarity Benchmark (STSB) task. An embedding in each
layer contains 1,024 dimensions. Note that we work with the em-
bedding in the last layer. To integrate the semantics of the query
into the premise, as the premise can also depend on it (e.g. the
premise’s stance), we computed both the embedding of the premise
(4? ) and the embedding of the query (4@) and merged it pointwise
via multiplication, addition and difference as follows:

(4? , 4@ · 4? , 4@ + 4? , |4@ − 4? |) (1)

Thus, each final embedding consists of 4,096 = 4 · 1, 024 dimensions.

5.2 Predicting Stances
In order to determine a premise’s stance to its query, we evaluated
various classifiers that distinguish between pro and con stances.
Since there are different notations for expressing stances, e.g., a
positive stance in the dataset appears in the forms “pro”, “pros”,
“well”, “for”, “in front of ”, etc., we manually unified them in a pre-
ceding step, resulting in only the two stances mentioned above.
As there were only 17 unique stances in the whole database and
those stances were unambiguous, the unification of these stances
was easy to accomplish by hand. The distribution of the stances is
relatively even (1,080 with stance pro and 1,106 with stance con).

For classification, we evaluated a total of five standard classi-
fiers with their standard parameters and evaluated the predictions
with leave-one-out cross validation, i.e., we have 49 folds.8 Con-
sidering the fact that we have only 2,186 argument units here, it

8For the implementation we used the framework from scikit-learn [3],
where we also took the default parameters from.



Table 3: Classifiers and their performance for predicting the
argument units’ stances.

accuracy
classifier (DeepL) (Google Translate)
Support Vector Machine 0.8632 0.8303
Extreme Gradient Boosting 0.8495 0.817
Random Forest 0.8449 0.8129
Gaussian Naïve Bayes 0.8381 0.8124
Logistic Regression 0.8353 0.7777

is not worthwhile to take 10 % (or five of 49 graphs) from this set
as a development set to find suitable parameters. Table 3 shows
the used classifiers and their performances in terms of accuracy.
As we can observe from the table, classification with a Support
Vector Machine performs best for predicting stances. Note that in a
preliminary study we executed the translations of the graphs by
Google Translate before calculating their embeddings. However,
by utilizing DeepL we achieved a performance boost between 2.5 to
5.7 percentage points for the accuracy values, which is an indicative
for the quality of the translations using DeepL. For the remainder
of the paper we use the translations from DeepL.

5.3 Predicting Frames
Contrary to the stances, the unification of the frames is more com-
plicated, because here we have much more frames, in total 133.
Another and here even more significant factor for the difficulty in
contrast to the stances are that frames can be differently similar
or dissimilar to other frames. For example, the frame “finance” is
more similar to “economy” than to “health”.

5.3.1 Our Approach. Our approach aims to predict the general
frames with classifiers and is very similar to the prediction of the
stances above.The only difference is that here we do not use the 133
frames for the classifiers in their pure form. Instead, we manually
group them by their similarity, obtaining 22 frames. This number
is reasonable as, e.g., Naderi and Hirst [21] used a similar one, i.e.,
16. Furthermore, online newspapers usually provide about 20 tags
to find interesting articles. Examples of such newspapers are BBC
News, The Independent, or Daily Mirror.9 Still, the distribution of
unified frames is clearly more unbalanced than for stances. While
the most used frame deals with “finance” (577), the least used deals
with “persuasion” (7). On average, each frame contains 99.4 argu-
ments (median 57).

The left side of Table 4 shows the results for predicting the ar-
gument units’ frames. As shown in the table, logistic regression
performs best for frame prediction. However, the performance here
is not as good as for predicting the stances owing to the class di-
versity. Due to this moderate performance in frame prediction, we
fine-tuned the underlying model 49 times.10 To this end, for each
graph we randomly picked both argument pairs with the same
frame label and argument pairs with different frame labels. For
equal and unequal argument frame pairs, we extracted at least 100
and at most 200 pairs. In fact, the algorithm stopped the random
9https://www.bbc.com/, https://www.independent.co.uk/, https://www.mirror.co.
uk/.
10https://sbert.net/docs/training/overview.html.

Table 4: Classifiers and their performance for predicting the
argument units’ frames.

accuracy accuracy
classifier standard model fine-tuned model
Logistic Regression 0.6839 0.9602
Extreme Gradient Boosting 0.6427 0.9515
Support Vector Machine 0.6327 0.7283
Random Forest 0.5933 0.9405
Gaussian Naïve Bayes 0.5119 0.5631

drawing of pairs once both conditions were met. Pairs with the
same frame and pairs from different frames were labeled with 1
and 0, respectively. We trained the model with only one epoch and
a batch size of 64. For each of the 49 argument graphs, we trained a
new model with the other 48 graphs and predicted the frame labels
for the remaining one. The right side of Table 4 shows the massive
performance boost gained after fine-tuning. Note that similar to
predicting the stances, the performance of the frame prediction
improved with the use of DeepL instead of Google Translate.
These improvements range from 0.9 to 6.1 percentage points for the
accuracy for the standard model but are not displayed due to space
limitations. Note also, that applying DeepL reduced the number of
unique frames in the concentrated dataset from 138 to 133.

5.3.2 Baselines to Cluster Frames. For comparing our framing ap-
proach with others, we employ two baseline methods here.

The first follows the idea of Reimers and Gurevych [26], who
apply agglomerative clustering on contextualized word embeddings
to obtain a frame-based clustering.We however implement a variant
here, namely that of our previous work [10], which instead of
making a constant tree cut, computes a dynamic one [16]. The latter
detects clusters in a dendrogram depending on their shape and
thus also finds nested clusters. This is helpful because otherwise we
would have to manually specify the cut height to get the number
of clusters, which we do not know in advance and may vary from
dataset to dataset and thus would be difficult to generalize.

The second baseline originates from Ajjour et al. [1] and clusters
arguments into frames in three steps.We choose this approach since
in their experiments they show the benefit of finding generic frames
after removing topical features from the arguments. As they com-
pare several variants in their work, here we restrict ourselves only
to their best reported performing parameters.11 In the first step,
they remove all topical features. For this, they map each argument
into a vector space, and then cluster them with :-means [12] using
Euclidean distance. For the mappings into the vector spaces they
use Latent Semantic analysis (LSA) [8] with 1,000 dimensions. In
their evaluation, they find that clustering by topics with LSA works
better by adding more contextual information. Since they work
with posts from debate portals, they achieve this by using debates
instead of individual arguments. In our implementation, we also
extend the arguments with additional context information in form
of query, argument graph headline and background information for
the above-mentioned reason. Furthermore, we use G-means [22],
instead of :-means, because the variable : is highly dependent on

11We used the libraries provided by scikit learn [3] and https://pyclustering.
github.io.

https://www.bbc.com/
https://www.independent.co.uk/
https://www.mirror.co.uk/
https://www.mirror.co.uk/
https://sbert.net/docs/training/overview.html
https://pyclustering.github.io
https://pyclustering.github.io


the selected dataset and we use a different one here. In our case,
for each argument graph the number of dimensions is smaller than
1,000 (about 40), because the argument graphs contain less words
than whole debates in debate portals which can be overwhelming.
In the second step, they remove the topic-specific features from the
formed topic clusters. For this, they compute tf-idf [30] for each
word in each cluster and remove all termswhose tf-idf value is over
an empirically chosen threshold X . They calculate idf using the fol-
lowing formula: idf(E) = |�̄| / |{�̄ 9 ∈ �̄ : for each word E ∈ �̄ 9 }|,
where �̄ is the set of arguments on the same topic. Finally, after
removing the terms from step 2, they again cluster all arguments
with :-means as in step 1. We again apply a slightly modified im-
plementation by using G-means.

5.4 Determination of the Final Clusters
Now after having determined both the stances and the frames, we
can already use them to form clusters by placing those argument
units in the same clusters where both stance and frame are identical.
We call this approach PLAIN. In addition, we can take this further
and run a final clustering procedure on these new disjoint subsets,
as illustrated in the pipeline in Figure 1. Therefore, we apply hi-
erarchical clustering in accordance with the state-of-the-art. We
follow the procedure of our prior work [10] and use agglomerative
clustering with Euclidean distance, the average linkage method, as
well as a dynamic tree cut [16] for these subsets. We call this ap-
proach SEQUENTIAL. We call the third and last approach MERGE
where we concatenate the cluster ids of the approaches PLAIN and
the agglomerative (henceforth called: HIERARCHIC) clustering
conducted on all arguments of a graph.

5.5 Evaluation Setup
We derive the ground truth clustering for the perfect labels from
the dataset, since the correct labels for stance, frame and final
clustering are already provided in the maps. We intend to evaluate
two important aspects regarding the clustering: First, we measure
the performance of the clusterings for the respective levels, i.e.,
stance and frame. Second, we evaluate the overall clustering given
that (as shown in Figure 1) the output of the preceding layer is used
as input for the current layer.

As a baseline, we use hierarchical (agglomerative) clustering of
the contextualized embeddings of the argument units according
to the state-of-the-art for clustering arguments. Please note that
the arguments in our dataset do not contain semantic duplicates of
arguments, yet this baseline is also used for that [10]. For computa-
tion of the agglomerative clustering, we use the implementation of
our previous work [10]. This method was already introduced earlier.
In addition to this baseline, we also added two simple comparison
clusterings by (1) putting all argument units in the same cluster
(SIMPLE = units

1 cluster), and (2) each argument unit in its own cluster
(SIMPLE = units

= clusters). For the rest, we implemented almost all of the
methods described in the previous section except that we used the
variant SEQUENTIAL only for the combinations that performed
best, due to the fact that agglomerative clustering is time consum-
ing. When computing the predictions for each graph, we always
removed that graph from the corresponding training set.

5.6 Evaluation Measures
We evaluated the clusterings using external cluster evaluation meth-
ods. In contrast to internal cluster evaluation measures, which re-
quire only the information of the vectors of the dataset, the external
evaluation measures are based on prior knowledge [28]. In this case,
the prior knowledge comprises the labels provided by the ground
truth. Since different cluster evaluation measures emphasize dis-
parate issues, we compare our clusterings by using two measures,
i.e., the Purity and the Adjusted Rand Index (Rand). We chose the
adjusted variant for Rand here because the amount of arguments
per graph is fairly small, and we want to eliminate randomness as
a factor here to avoid producing true clusters by chance. We briefly
explain the main features of these measures: Purity ranges from
0 to 1 and measures the extent to which clusters contain a single
class. The value 1 implies a perfect clustering. The drawback here
is that a high number of clusters result in a high purity. Actually,
we get purity 1 simply by putting each element in its own cluster.
The adjusted Rand index ranges from 0 to 1 and calculates the ac-
curacy of the generated clusterings in comparison to the ground
truth. Hereby, it penalizes false positives as well as false negatives
with equal weights. The term adjusted implies that the values are
adjusted for chance. In the context of clustering, we propose to
favor the product of these two measures, i.e., prod(P,R) as we want
to obtain a good balance between many pure clusters (following
the Purity) and few impure clusters (following the Rand index).

5.7 Evaluation Results
Tables 5, 6, 7 display the measured performance in terms of external
cluster evaluationmethods after classifying (or clustering) by stance,
frames, or meaning, respectively. All tables are sorted by prod(P,R)
in descending order.

Evaluation of Clustering by Stance. Since the classifier Support
Vector Machine (SVM) performs best for predicting stances (see
Table 3) and also achieves a better clustering (see Table 5), we only
show this classifier in comparison to the baseline and the compari-
son values. Anyway, the other classifiers’ performances were worse.
We can observe from the table that a SVM for stance prediction
(henceforth: SVMstance) achieves the best performance here. The
hierarchical clustering is obviously and as expected not suitable for
this task. Just as one might have guessed, even perfect clustering by
frame is of no use if we want to cluster by stance. In the following
we will see that it is the same the other way around. This supports
the thesis that it makes sense to cluster by stance and by frames
because they do not get in each other’s way. In order to incorporate
correction for multiple tests, we performed Tukey’s HSD (honestly
significant difference) tests [29] with ? = .05 on the purity and
adjusted Rand values on the 49 folds showing significant differ-
ences between SVMstance and the other methods in Table 5. Hence,
SVMstance for stance prediction especially outperforms the baseline
comprising hierarchical clustering but is still significantly worse
than the ground truth. The observed difference between SVMstance

and the other classifiers shown in Table 3 is not significant.

Evaluation of Clustering by Frame. Table 6 shows the cluster-
ing performance when we take gold standard frames as ground
truth. For a better overview, we only show the best performing



Table 5: Table showing performance for clustering when
stance is the only ground truth. The highest values unequal
to the comparison values are marked in bold.

mean mean
method Purity Rand prod(P,R)
SVMstance 0.8542 0.524 0.4476
HIERARCHIC 0.7364 0.0343 0.0253
ground truthframe 0.6033 0.0 0.0
SIMPLE = units

1 cluster 0.5397 0.0 0.0
SIMPLE = units

= clusters 1.0 0.0 0.0

variant for the baseline LSAframe here. It should be no surprise
that the classifiers trained on the fine-tuned dataset (NBframe

tuned and
LRframe

tuned) perform better than those of the standard model (NBframe

and LRframe). However, the surprise is that NBframe
tuned , which was

noticeably worse at correctly assigning frame labels to the classi-
fiers (see Table 4), now even outperforms LRframe

tuned . After examining
the predicted labels more closely for both NBframe

tuned and LRframe
tuned , we

can report that although NBframe
tuned often predicted the presumed

“wrong” label, it was able to assign the same frame labels more
often to arguments that have the same ground truth labels (see Sec-
tion 5.8). Therefore, it might be primarily important that argument
units with the same frame are placed in the same cluster, no matter
whether the correct frame was predicted; predicting frame labels is
a task for future work. Considering the classifiers which run on the
embeddings of the standard model, we observed that the perfor-
mance agrees with Table 4. Furthermore, we can infer from the table
that the two baselines, HIERARCHIC and LSAframe perform worst
here. Presumably, the dynamic tree cut is not well suited for cluster
determination after agglomerative clustering. LSAframe probably
performs poorly because we have fewer terms in the graphs here
than in the debate portals that were used in the original work [1].

As we did with the stances, here we also conducted Tukey’s HSD
tests with ? = .05 on the purity and adjusted Rand values of the 49
folds. The observed difference after applying the fine-tuned models
is significant for both measures. We did not find significant differ-
ences between LRframe, LSAframe, and HIERARCHIC for the Rand
index, but we did for Purity. Moreover, we observed a significant
difference between NBframe

tuned and LRframe
tuned for both measures.

Evaluation of Final Clustering. Table 7 shows the performance for
the final clusterings. In the following, a triple ((, �,�) implies that
the methods (, �, and � were executed sequentially, where ( is the
stance prediction and � is the frame prediction.� describes the final
clustering, which is skipped in the case of SKIP. Again, for the sake
of clarity, we chose the best combinations of the methods perform-
ing out of Tables 5 and 6. Anyway, the values of the other methods
were not better than the ones shown here. As we can see in the table,
we defeat the baseline by classifying the stances of the argument
units with SVMstance beforehand and then classifying the frames
with NBframe

tuned . Users interested in more pure clusters can combine
the cluster ids withMERGE as this method retrieves the intersection
of the clusters. While the combinations using the standard model
without fine tuning as well as the baseline LSAframe perform poorer,

Table 6: Table showing performance for clustering when frame
is the only ground truth. The highest values unequal to the
comparison values are marked in bold.

mean mean
method Purity Rand prod(P,R)
NBframe

tuned 0.849 0.6982 0.5928
LRframe

tuned 0.7833 0.5653 0.4428
LRframe 0.5175 0.0974 0.0504
NBframe 0.4577 0.062 0.0284
HIERARCHIC 0.5394 0.0317 0.0171
LSAframe 0.3905 0.0244 0.0095
ground truthstance 0.3773 0.0 0.0
SIMPLE = units

1 cluster 0.3519 0.0 0.0
SIMPLE = units

= clusters 1.0 0.0 0.0

all combinations using SEQUENTIAL perform worst in terms of
the Rand index. This might be due to the graphs having relatively
small sizes, but may work better for larger graphs. As with stance
and frame, here we also performed Tukey’s HSD tests. For both
Purity and Rand, the observed differences between the methods
(SVMstance, NBframe

tuned , SKIP) and (SVMstance, NBframe
tuned , MERGE) to

the others were significant. Furthermore, we observed significant
differences between these two methods for both measures.

5.8 Evaluation on Another Dataset
In order to evaluate the performance of our methods in a more
generalized way, we applied them to another dataset, that is, AURC-
8 [37]. This dataset consists of eight topics each with 1,000 user-
generated sentences originating from the CommonCrawl archive.12
A key difference to our dataset, besides presumably different ap-
pearing frames as well as topics being used as queries, is the larger
size of AURC-8. Some of the sentences are divided into several ar-
gument units, others are not argumentative at all. Overall, there are
4,967 argument units. Among others, the topics include abortion,
net neutrality, or gun laws. With this dataset, we evaluate stance
prediction, framing, and final clustering. In all experiments, we
shuffled the data and disguised each information that could bias
the annotator’s decision (such as the used classifier names).

Evaluation of the Stance Predictions. To evaluate the stance pre-
dictions, we trained the SVM classifier on our dataset and then
generated the predictions for AURC-8 (after calculating the em-
beddings applying Equation 1). Since AURC-8 already comes with
gold labels for stances, we could easily determine the accuracy,
which is 0.7244. The classifier predicted 2,241 times a pro stance
and 2,728 times a con stance. However, since stance prediction is
not the focus of this paper, we did not make any further effort to
boost this value.

Evaluation of the Frame Predictions. As we already saw in Table 6
actually only the classifiers for frame prediction, once trained on
the fine-tuned embeddings, perform well. Thus, here we consider
only those classifiers trained on the embeddings of the fine-tuned
model on the initial dataset. To be precise, we evaluate here only
12http://commoncrawl.org/2016/02/february-2016-crawl-archive-now-available/.

http://commoncrawl.org/2016/02/february-2016-crawl-archive-now-available/


Table 7: Table showing performance for clustering when the
final clustering is the only ground truth. The highest values
unequal to the comparison values are marked in bold.

mean mean
method Purity Rand prod(P,R)
(SVMstance, NBframe

tuned , SKIP) 0.5424 0.3293 0.1786
(SVMstance, NBframe

tuned , MERGE) 0.7848 0.1732 0.1359
(SVMstance, LRframe, MERGE) 0.7033 0.0805 0.0566
(SVMstance, LSAframe, MERGE) 0.5804 0.0768 0.0446
(SVMstance, LRframe, SKIP) 0.4066 0.1011 0.0411
(SVMstance, LSAframe, SKIP) 0.2624 0.0711 0.0187
HIERARCHIC 0.3525 0.046 0.0162
(SVMstance, NBframe

tuned , SEQUENTIAL) 0.997 0.0006 0.0006
ground truthframe 0.4102 0.3184 0.1306
ground truthstance 0.2403 0.1283 0.0308
SIMPLE = units

= clusters 1.0 0.0 0.0
SIMPLE = units

1 cluster 0.1327 0.0 0.0

the frame predictions of NBframe
tuned and LRframe

tuned , because the latter
performed better in predicting the correct frame labels (see Table 4),
whereas the former detected more correct frame clusters, even
though the latter assigned them to different frame names. Besides,
we disregard LSAframe and HIERARCHIC as they do not provide
frame labels which we could evaluate here. Moreover, LSAframe

needs to specify several parameters and thresholds.
We evaluate two aspects: (i) we investigate which of the two

classifiers can findmore correct frame labels, and (ii) which classifier
is better at clustering into frames of arguments. Note that similar
to the ground truth, the predictions are relatively unbalanced for
both classifiers, while the distributions are similar to each other
and to the ground truth to some extent. In terms of (i), we randomly
pick ten premises for each of the eight topics for both classifiers
(160 = 10·8·2).Then, an annotator determined scores on a scale from
1 to 3 whether the output frame labels are absolutely reasonable
(score 3), tenable to an extent (score 2), or not reasonable at all
(score 1). We purposely chose not to let the annotator assign labels
here because we do not want to penalize the classifiers if they
assign labels to the premises that are reasonable but different to the
ground truth. For example, for the argument unit “the death penalty
is a deterrent to crime” one classifier predicted the frame “safety”
while the other predicted “effectiveness” which are both acceptable.
The mean average scores for NBframe

tuned and LRframe
tuned are 2.275 and

2.15, respectively. Thus, both classifiers predict tenable frame labels.
Similar to our dataset, NBframe

tuned performs slightly better. In terms
of (ii), for each of the eight topics we draw 50 premise pairs and
let an annotator decide for each of the 400 pairs on the same scale
from 1 to 3 whether the two premises could be placed in the same
frame cluster or not. After that, we computed the accuracy values
for the two classifiers. Considering premise pairs as similar with a
minimum score of 2, the accuracy for NBframe

tuned and LRframe
tuned is 0.648

and 0.593, respectively. With a minimum score of 3, the accuracy
values yield 0.62 and 0.6. Once again, the former performs better.

Evaluation of the Clustering Predictions. We employed the fol-
lowing approach to evaluate whether our findings in the initial
dataset corresponds to this one: For each of the eight topics, we

computed the clusterings of the four methods (SVMstance, NBframe
tuned ,

SKIP), (SVMstance, NBframe
tuned , MERGE), (SVMstance, LRframe

tuned , MERGE),
and HIERARCHIC (see Table 7). Existing works often evaluate argu-
ment clusters by assessing the similarity of pairs of arguments, for
example, on a scale of 1 to 3. Given the interpretive freedoms, we
take a more robust approach here: we choose two arguments from
each cluster and also add a randomly picked one from another clus-
ter (with the same topic). The annotator now has to decide which
of the three arguments is least fitting to the cluster. For each topic
and method, we picked 10 pairs from the clusterings and asked
an annotator to spot the intruding premise. Thus, we have a total
of 314 triples to be evaluated.13 The methods (SVMstance, NBframe

tuned ,
SKIP), (SVMstance, NBframe

tuned , MERGE), (SVMstance, LRframe
tuned , MERGE),

and HIERARCHIC yielded mean average precision values of 0.663,
0.638, 0.663, and 0.663, respectively. The mean average cluster sizes
are 16.5, 310.88, 367.13, and 115.75. Overall, we can conclude that
the final clustering step yields a more fine granular clustering, yet
it does not seem to improve the state-of-the-art applying agglomer-
ative clustering at least in this dataset. Most likely, this is due to the
vast amount of premises to be clustered here, therefore requiring
more intermediate steps.

6 CONCLUSION AND FUTUREWORK
Clustering arguments to help users identifying the best arguments
quickly is an important yet difficult task in argument retrieval. In
this paper, we demonstrated that the clustering of arguments can be
enhanced by dividing them by their stances as well as their frames
before performing a final clustering on them. We make our new
dataset consisting of high quality argument graphs published in
newspapers for classifying by stances, frames and final clusters
available to the computational argumentation community.

In future work, we plan to extend the pipeline to include argu-
ment schemes such as those of Walton et al. [42]. We plan also
to cluster argument units by their factual validity as well as their
argument quality dimensions [38], i.e., we then address whether
the units are logically conclusive or just evoke emotions. Since we
now have a gold standard for high quality arguments and their
clustering, we may use this to predict the cluster labels. For exam-
ple, the transformer model T5 [25] is suitable for this purpose as it
allows fine-tuning. As each argument graph consists of a query and
arguments along with labels for stance, frame, and cluster, we can
use it primarily as an argument base for IR systems, where we could,
for example, use these queries to train retrieval for arguments.
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